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Thermalization and criticality on an 
analogue–digital quantum simulator

Understanding how interacting particles approach thermal equilibrium is a major 
challenge of quantum simulators1,2. Unlocking the full potential of such systems 
towards this goal requires flexible initial state preparation, precise time evolution  
and extensive probes for final state characterization. Here we present a quantum 
simulator comprising 69 superconducting qubits that supports both universal 
quantum gates and high-fidelity analogue evolution, with performance beyond  
the reach of classical simulation in cross-entropy benchmarking experiments. This 
hybrid platform features more versatile measurement capabilities compared with 
analogue-only simulators, which we leverage here to reveal a coarsening-induced 
breakdown of Kibble–Zurek scaling predictions3 in the XY model, as well as signatures 
of the classical Kosterlitz–Thouless phase transition4. Moreover, the digital gates 
enable precise energy control, allowing us to study the effects of the eigenstate 
thermalization hypothesis5–7 in targeted parts of the eigenspectrum. We also 
demonstrate digital preparation of pairwise-entangled dimer states, and image the 
transport of energy and vorticity during subsequent thermalization in analogue 
evolution. These results establish the efficacy of superconducting analogue–digital 
quantum processors for preparing states across many-body spectra and unveiling 
their thermalization dynamics.

The advent of quantum simulators in various platforms8–14 has opened 
a powerful experimental avenue towards answering the theoretical 
question of thermalization5,6, which seeks to reconcile the unitarity of 
quantum evolution with the emergence of statistical mechanics in con-
stituent subsystems. A particularly interesting setting is that in which 
a quantum system is swept through a critical point15–18, as varying the 
sweep rate can allow for accessing markedly different paths through 
phase space and correspondingly distinct coarsening behaviour. Such 
effects have been theoretically predicted to cause deviations19–22 from 
the celebrated Kibble–Zurek (KZ) mechanism, which states that the 
correlation length ξ of the final state follows a universal power-law 
scaling with the ramp time tr (refs. 3,23–25).

Whereas tremendous technical advancements in quantum simula-
tors have enabled the observation of a wealth of thermalization-related 
phenomena26–35, the analogue nature of these systems has also imposed 
constraints on the experimental versatility. Studying thermalization 
dynamics necessitates state characterization beyond density–density  
correlations and preparation of initial states across the entire eigenspec-
trum, both of which are difficult without universal quantum control36. 
Although digital quantum processors are in principle suitable for such 
tasks, implementing Hamiltonian evolution requires a high number 
of digital gates, making large-scale Hamiltonian simulation infeasible 
under current gate errors.

In this work, we present a hybrid analogue–digital37,38 quantum simu-
lator comprising 69 superconducting transmon qubits connected 
by tunable couplers in a two-dimensional (2D) lattice (Fig. 1a). The 
quantum simulator supports universal entangling gates with pairwise 
interaction between qubits, and high-fidelity analogue simulation of 
a U(1) symmetric spin Hamiltonian when all couplers are activated 

at once. The low analogue evolution error, which was previously dif-
ficult to achieve with transmon qubits due to correlated cross-talk 
effects, is enabled by a new scalable calibration scheme (Fig. 1b). Using 
cross-entropy benchmarking (XEB)39, we demonstrate analogue per-
formance that exceeds the simulation capacity of known classical 
algorithms at the full system size.

Leveraging these capabilities, we prepare and characterize states 
of a 2D XY magnet with broadly tunable energy density, allowing us to 
study the interplay between quantum and classical critical behaviour 
in the rich phase diagram of our system. Specifically, we observe 
finite-size signatures of the Kosterlitz–Thouless topological phase 
transition—including the emergence of algebraically decaying cor-
relations with exponent near the expected universal value of 1

4
—and 

demonstrate a breakdown of the KZ mechanism. Our study takes 
advantage of extensive measurement capabilities to characterize, for 
example, entanglement entropy for subsystems up to 12 qubits, 
multi-qubit vortex correlators and energy fluctuations. We also lever-
age our hybrid analogue–digital scheme (Fig. 1a) to prepare entangled 
initial states, allowing us to spatially tailor the energy density and vor-
ticity, and investigate the subsequent thermalization dynamics and 
energy transport.

Operating coupled transmons as a high-fidelity analogue quantum 
simulator requires precise knowledge of the many-body spin Hamilto-
nian Hs, which depends on the ‘bare’ frequencies, {ωqi} and {ωcj}, of qubits 
qi and couplers cj. However, experimental calibration is only capable 
of resolving ‘dressed’ frequencies that—unlike the bare frequencies— 
change from local (isolated) calibrations to full-scale experiments 
due to hybridization with neighbouring qubits and couplers. Given 
this difficulty, past experimental studies30,31 either suffered from large 
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errors or resorted to multi-parameter optimization protocols that are 
difficult to scale up. Sophisticated Hamiltonian learning techniques40,41 
can circumvent these issues, but still have potential vulnerabilities to 
Hamiltonian ramps, noise and errors in state preparation and meas-
urement (SPAM).

In this work, we present a scalable calibration protocol that achieves 
low error by explicitly calibrating the bare frequencies. As illustrated 
in Fig. 1b, the protocol begins with two-qubit calibration measurements 
(single-photon and swap spectroscopy, which is robust to ramps and 
SPAM errors) to determine the effective coupling ∼g  and dressed qubit 
frequencies ∼ω{ }qi  of every qubit pair. Next, we use extensive modelling 
of the underlying device physics to convert the dressed quantities to 
the bare frequencies {ωqi}, {ωcj}. Finally, a projection technique is applied 

to approximate our high-dimension device Hamiltonian, Hd({ωqi}, {ωcj}), 
into a spin Hamiltonian, Hs:

∑ ∑H ω n g X X Y Y g η= + ( + )/2 + ( / ) (1)
i

i i
i j

ij i j i js
,

2O

where ωi and ∣gij∣ ≈ g are tunable on-site potentials and nearest-neighbour 
couplings, respectively. The latter is notably smaller than the qubit 
anharmonicity η ≫ g. This restricts the photon occupation numbers 
to ni = 0, 1 and Xi, Yi are Pauli operators acting in this subspace. The 
Hamiltonian in equation (1) is in the universality class of an XY model 
with on-site z-fields. A natural consequence of the hybridization in our 
system is that Hs contains not only nearest-neighbour hopping, but 
also density–density interactions and next-nearest-neighbour terms, 
which scale as order O(g2/η) and are typically five to ten times smaller 
than g (see further details in Methods).

A computationally challenging problem and useful benchmark for 
the quantum simulator is the thermalization dynamics of an initial 
Z-basis product state at half-filling, which has high temperature with 
respect to Hs and hosts many quasiparticles (Fig. 2a). When subject to 
the (photon number conserving) time evolution operator e iH t ħ− /s  where  
ħ is the reduced Planck constant (set to 1 hereafter), interactions 
between quasiparticles are expected to drive the system into a chaotic 
state. To explore these dynamics, we perform a rapid (6 ns) ramp of 
the couplings gij/2π from 0 to 10 MHz. Quantum chaotic behaviour is 
then diagnosed by means of Z-basis measurements at different times, 
yielding a set of probability distributions pmeas(x, t) where {x} represents 
the set of D ‘bitstrings’ with the same number of photons as the initial 
state. Figure 2b shows the distribution Pr(p) of pmeas(x, t) for reduced 
system sizes up to Nq = 25 at t = 5.5/g. In each case, Pr(p) shows a clear 
exponential decay known as the Porter–Thomas distribution, signalling 
thermalization to a quantum chaotic state39,42. By contrast, past studies 
have found substantial deviations from the Porter–Thomas distribution 
in other models of analogue dynamics43,44.

Characterizing the thermalization dynamics through the second 
moment of the bitstring distribution, also called the self-XEB39, 
D p x t∑ ( , ) − 1x meas

2 , we observe its fast convergence to the Porter–
Thomas (PT) value of 1 within tPT ≈ 60 ns (roughly 4/g) for all system 
sizes (Fig.  2b inset, see Supplementary Information for similar  
saturation rate of entanglement entropy). The observed fast scram
bling dynamics are due to the simultaneously activated couplers,  
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Fig. 1 | Analogue–digital simulation with high-precision calibration. a, Our 
platform combines analogue evolution with digital gates for extensive state 
preparation and characterization. b, Schematic of new scalable analogue 
calibration scheme. Swap (blue) and single-photon (red) spectroscopy is used 
to extract dressed coupling rates ( g{ }͠ ) and qubit frequencies ( ω͠{ }qi ) of two- 
qubit analogue evolution (UA), which are converted to bare qubit and coupler 
frequencies ({ωqi}, {ωcj}) through detailed device modelling. The bare frequencies 
allow for establishing the device Hamiltonian of the full system, which is finally 
projected to a spin Hamiltonian, Hs.
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Fig. 2 | Fast thermalization dynamics and beyond-classical capabilities in 
the high-temperature regime. a, Schematic representation of the experiment: 
Nq qubits are initialized in a half-filling state, evolved under a Hamiltonian Hs 
over time t with four instances of disorder in {ωi}, and finally measured in the 
Z-basis. b, Distribution Pr(p) of bitstring probabilities p from experiment 
(coloured bars) at t = 96 ns ≈ 5.5/g and ideal Porter–Thomas distribution Pr(p) =  
De−pD (dashed lines). Inset, convergence of the self-XEB with time. c, Time- 
dependent XEB fidelity for system sizes up to Nq = 35. Inset, system size 
dependence of ϵ (error per qubit per evolution time of 1/g) from exponential 
fits. d, Mixed-state entanglement proxy, PE , obtained in this and previous 

studies, plotted against the effective system size N q
eff  (with respect to 

entanglement of a fully chaotic state; Supplementary Information) of the 
respective platforms. Blue pentagons, Sycamore processor in the digital 
regime45,48; diamonds, Zuchongzhi processor46,47; circle, neutral atom analogue 
simulator44; green pentagon, present experiment. N q

eff  is equal to the actual Nq 
in the digital experiments, whereas analogue platforms are subject to U(1) 
conservation (this work) or constraints from Rydberg blockade44. Inset, EP as a 
function of Nq computed from experimental data, including the linear fit used 
for extrapolation to 69 qubits.
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and—compared to an equivalent digital circuit—allow for less shift 
towards the decohered distribution, Pr(p) = D−1 with self-XEB = 0.

To also characterize the coherent errors from imperfect calibration of  
Hs, we consider the linear XEB fidelity, F t D p x t p x t( ) = ∑ ( , ) ( , ) − 1x meas sim

,  
where psim are exactly simulated probabilities39. The results, shown in 
Fig. 2c, show exponential decay after times roughly tPT, where F accu-
rately describes the state fidelity (Supplementary Information). Fitting 
the decay, we obtain an error rate of ϵ = 0.10 ± 0.02% per qubit per 
evolution time of 1/g (one cycle). ϵ is nearly independent of system size 
up to the largest exactly simulated system, Nq = 35 (inset of Fig. 2c). 
This indicates the scalability of our calibration protocol and allows 
extrapolation to the full system size of Nq = 69. Approximate matrix 
product state (MPS) simulations with bond dimension up to χ = 1,024 
were found to be ineffective beyond exactly simulatable system sizes, 
due to the fast entanglement growth and 2D geometry of our system 
(Supplementary Information).

The combination of the observed fast dynamics and high fidelity 
enables quantum simulation of computationally complex states.  
A representative metric of this capability is the mixed-state entangle-
ment proxy, E =P  SRényi-1/2

ent F+log2 , which lower bounds the mixed-state 
entanglement by accounting for the effects of infidelity on the 
pure-state Rényi-1/2 entropy44. Figure 2d compares the estimated EP 
of our work and other recent state-of-the-art experiments44–48, in 
which the proximity to the diagonal (ideal) line measures fidelity, 
indicating that our platform offers new possibilities for high-accuracy 
study of highly entangled states. In particular, we estimate that  
simulations with the level of our experimental fidelity requires more 

than 106 years on the Frontier supercomputer (Supplementary  
Information).

Having explored the thermalization dynamics in the high- 
temperature regime, we next turn to the rest of the rich phase dia-
gram in the XY model (equation (1)), which is expected to show both 
a quantum phase transition in the ground state and a classical Koster-
litz–Thouless phase transition at finite temperature4. To prepare low-
energy states of an antiferromagnetic XY magnet, we apply a staggered 
z-field of magnitude h/(2π) = 30 MHz and initialize the qubits in the 
Z-basis Neel state, maximizing the energy with respect to the first 
term in equation (1). We then ramp down the staggered field while 
simultaneously turning on ferromagnetic couplings of magnitude 
gm/(2π) = 20 MHz over a duration tr (Fig. 3a). Under such a protocol49, 
the system evolution is equivalent to that of an antiferromagnetic XY 
model with staggered field, initialized in the ground state. This ramp 
crosses a quantum phase transition between a paramagnetic phase 
with unbroken U(1) symmetry and the XY-ordered phase at a time tc ≈ 
0.45tr when hc/gc ≈ 1.8(6) (Supplementary Information). The transi-
tion, analogous to the 2D Mott insulator–superfluid transition50, is 
in the universality class of a three-dimensional (3D) XY model, with 
the correlation length and dynamical critical exponents ν ≈ 0.67 and 
z = 1, respectively. Following the ramp, we rapidly return back to the 
idle frequencies within 3 ns and perform measurements of correla-
tion functions.

Figure 3b shows the ramp time dependence of the average energy 
density, ∑ε n X X Y Y= ⟨ + ⟩/2i j i j i jB

−1
⟨ , ⟩

 averaged over nB = 110 bonds  
(Nq = 65) and corrected for readout errors (Methods). As tr increases 
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Fig. 3 | Critical coarsening in the XY model. a, Left, experimental schematic of 
qubit frequencies (blue) and coupling (yellow). Right, phase diagram. Dynamics 
become diabatic (dashed black) with increased temperature (T) when inverse 
remaining time (red) exceeds gap (green; Δ ∝ ∣g − gc∣νz). QCP and CCP denote the 
quantum and classical critical phases, respectively. b, The final energy density 
approaches the ground state value (εgs, grey) and Kosterlitz–Thouless transition 
value (εKT, black) as tr is increased. Red circles and squares indicate single-qubit 
(SQ) and Bell basis measurements, respectively. Blue, MPS simulation. Purple 
shading indicates where classical critical behaviour is expected. c, Average 
correlation, rG ( ) (found from averaging (⟨XiXj + YiYj⟩ − ⟨Xi⟩⟨Xj⟩ − ⟨Yi⟩⟨Yj⟩)/2 over all 
pairs i, j separated by r) measured at various tr. d, Decay of radially averaged 
correlations. Green and purple curves show examples of exponential and 
power-law fits, respectively, performed up to a distance of 6 to avoid finite-size 
effects at longer distances. Error bars represent one standard deviation 
estimated from bootstrapping (Nreps = 5 × 104 repetitions). e, Ratio between 

r.m.s. errors from power-law and exponential fits (ϵ ϵ/pow exp) decreases for 
gmtr > 15. f, Power-law exponent, γ, approaches expected value at Kosterlitz–
Thouless transition (1/4; black line). g, Vortex density proxy, nV, decreases to 
minimum of 2 × 10−2. h, Correlation length increases with tr. Both simulation 
results (blue) and experimental data (red) show substantially more superlinear 
growth than KZ predictions (dashed black). Diamonds, correlation lengths 
extracted at expected freezing point (i). i, Correlation length during the ramp, 
shown with and without rescaling (main and inset, respectively) and two-sided 
logarithmic axes for ∣τ∣ > τKZ. ξKZ is found from fitting ξ τ τ ξ τ t( = ) = ( / )r

β
KZ 0 KZ

−  with 
β = 0.9(1) (difference from β = ν = 0.67 expected to be due to finite-size effects). 
Dashed coloured lines show the theoretically expected scaling, f(x) = ∣x∣−ν with 
ν = 0.67 for x < −1 (purple) and a heuristic f(x) = xη with η = 1 for x > 1 (teal). The 
increase in ξ beyond the freezing point (diamond) causes deviation from KZ 
predictions.
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and the dynamics become more adiabatic, we observe a decrease in 
energy density towards the theoretically predicted ground state value 
of εgs = −0.56, as well as the predicted Kosterlitz–Thouless (KT) transi-
tion energy density, εKT = −0.53 ± 0.01 (grey and black lines, respec-
tively). As demonstrated below, the final states are thermalized to a 
strong extent, so ε can be used to evaluate the final effective tempera-
ture. To correct for photon decay errors, we apply digital entangling 
gates at the end of the circuit to convert each pair of qubits to the Bell 
basis (Methods). This allows for postselecting with respect to photon 
number conservation (red squares), which yields an improved value 
of ε = −0.53 ± 0.01, roughly equal to the Kosterlitz–Thouless transition 
point. The remaining discrepancy from εgs is attributed to dephasing 
effects, which are not corrected by this technique.

As the energy itself does not reveal the effects of thermalization, 
we next turn to correlations at longer distances and consider the aver-
age correlation, rG ( ), between pairs of qubits separated by r, shown 
in Fig. 3c. We observe antiferromagnetic ordering, with the range and 
magnitude of correlations increasing notably with ramp time, as 
expected for states with decreasing energy. We next compute the 
radial average, G ( )r , and fit the resulting decay profiles with expo-
nential fits to extract the correlation length, ξ, as well as with power-law 
fits to evaluate the type of distance-scaling (Fig. 3d). At short ramp 
times, the correlations are found to decay exponentially, as theo-
retically expected for states above the Kosterlitz–Thouless transition, 
in which freely proliferating vortices preclude long-range order. At 
longer ramp times, on the other hand, the decay behaviour is better 
described by power-law fits, as shown in Fig. 3e; specifically, we 
observe a marked decrease in the ratio between the root-mean-square 
(r.m.s.) errors of power-law and exponential fits to well below 1 near 
gmtr = 25, where the energy is also close to its minimum value. This 
behaviour is consistent with that expected in the classical critical 
regime, where free vortices become entropically unfavourable and 
are replaced by bound vortex–antivortex pairs, leading to algebrai-
cally decaying correlations. (We note that finite-size scaling analysis 
of the Kosterlitz–Thouless transition is challenging, owing to char-
acteristic rapid growth of the correlation length, and is not attempted 
here.) In the region with good power-law agreement, we extract a 
power-law exponent of γ = −0.29 (Fig. 3f), close to the theoretically 
expected universal value of − 1

4 at the Kosterlitz–Thouless transition51. 
To further substantiate our interpretation, we also measure four-qubit 
correlators to construct the Swendsen proxy for the vortex density52, 
given by n X X Y Y X X Y Y= ∑ (1 − − )(1 − − )N

N
i i i i i i i iV

1
4 i=1 1 3 1 3 2 4 2 4P

P  for plaquettes 
i = 1, ‥, NP with vertices {i1, i2, i3, i4}. Indeed, we find a rapid decrease 

in nV as tr is increased (Fig. 3g), to a minimum value of 2 × 10−2 in the 
low-energy regime.

Having studied the classical critical behaviour, we next explore the 
scaling of the correlation length with the duration tr over which we 
sweep through the quantum critical point (Fig. 3h). The correlation 
length rises to a maximum of ξ ≈ 10 at gmtr = 25, which is equal to the 
longest dimension of our system. At long ramp times, we observe a 
slight decrease in ξ, attributed to qubit decoherence, as well as peri-
odic oscillations. The latter are also observed in MPS simulations and 
expected to be caused by finite-size effects. Focusing on shorter ramp 
times for which these additional effects are absent and the correlations 
show a more clear exponential decay, we observe strong deviation from 
the power-law scaling with exponent ν/(1 + νz) = 0.4 predicted by KZ 
theory. Specifically, ξ grows substantially more superlinearly, and clear 
discrepancies from power-law scaling are observed in both experiment 
and simulation. We attribute the observed breakdown of KZ scaling to 
coarsening beyond the expected freezing point19,21.

To demonstrate this more explicitly, we measure the correlation 
length along the Hamiltonian ramp (Fig. 3i). The KZ prediction assumes 
that the dynamics freeze at tKZ, when the inverse gap exceeds ∣t − tc∣. By 
contrast, we find that ξ continues to increase, suggesting that the sys-
tem is instead able to further thermalize, thus causing a different cor-
relation length at the end of the ramp. To illuminate this point, we plot 
the experimentally measured correlation lengths at tKZ in Fig. 3h and 
find better agreement with the KZ prediction. Notably, by rescaling to 
ξ/ξKZ and (t − tc)/∣tKZ − tc∣ ≡ τ/τKZ, we find that the curves collapse to a 
common f(τ/τKZ), consistent with predictions of universal coarsening 
dynamics19,21,22. The collapse extends well beyond the quantum critical 
regime, −τKZ < τ < τKZ, indicative of dynamical universality driven by 
coarsening. We observe behaviour similar to the theoretically predicted 
f(x) ∝ ∣x∣−ν for x < −1 (small deviations probably related to effects of 
finite size and short ξ), and f(1)/f(−1) = 2.3 ± 0.1. We heuristically find 
approximately f x x( ) ∝  for x > 1, in which the interplay of gapped and 
gapless modes is expected to cause different behaviour from quantum 
Ising models.

Thus far, we have tuned the final energy through the ramp rate of 
the Hamiltonian. To further study thermalization, as well as the scaling 
relations near the Kosterlitz–Thouless transition, we prepare a variable 
number of excitations, n0 (pairs of spin flips in randomized locations) 
in the initial state53. Whereas we find that the final average energy den-
sity depends linearly on n0 (Fig. 4a), the behaviour of the correlation 
length is more intricate (Fig. 4b) and is best understood by plotting ξ 
versus energy density for all n0 and gmtr > 5 (Fig. 4c). Notably, the points 
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show a collapse (also for nV in inset), suggesting that the final states 
are well thermalized, such that the energy density determines ξ and 
nV, as expected from the eigenstate thermalization hypothesis (ETH)5,6. 
Barring ξ near the system size, we find that ξlog  is nearly linear in 
∣ε − εKT∣−0.5, as expected near the Kosterlitz–Thouless transition. This is 
incompatible with naive KZ scaling, and thus further corroborates its 
breakdown.

Although thermalization causes states created with different n0 and 
tr to have the same observables (for example, nV and ξ) if their final 
energies are equal, the states themselves are not necessarily the same. 
This can be seen by studying observables such as the energy fluctua-
tions, σ n g H H= ( ) ⟨ ⟩ − ⟨ ⟩ε XY XYB m

−1 2 2  with HXY = ∑⟨i,j⟩(XiXj + YiYj)/2, which  
trivially commute with HXY and are thus not thermalized under ETH. 
We next reconstruct σε from two- and four-qubit correlators (Methods) 
and find that it decreases from 0.07 to 0.02 as we approach the ground 
state for n0 = 0, whereas its dependence on n0 is weaker (Fig. 4d). The 
low value of σε compared to the tunable energy range indicates our 
ability to probe specific parts of the spectrum. Notably, when the full 
dataset across tr and n0 is plotted against energy density, the points do 
not collapse (Fig. 4e). This shows the difference in states accessed by 
the two tuning techniques, which was previously concealed by the 
thermalization of nV and ξ.

To further characterize the degree of thermalization, we leverage 
the fast data acquisition rate of our platform to measure the entangle-
ment entropy for subsystem sizes up to 12 qubits, using randomized 
measurements54. At n0 = 0, we find area-law behaviour (Fig. 4f), which, 

up to a subleading logarithmic contribution, is consistent with pre-
dictions for low-energy states in the XY model55. However, tuning 
to higher final energies by means of larger n0, we find a continuous 
crossover to volume-law behaviour (area- and volume-law compo-
nents in inset), as is expected from ETH for thermalized states at finite 
energy density2,36.

We have so far observed signatures of thermalization in the final 
state of the dynamics, but the thermalization dynamics themselves are 
still left unexplored. Although we have shown that tr and n0 are effec-
tive for realizing and studying states with a desired energy and energy 
fluctuations, they are limited when it comes to studying spatiotemporal 
dynamics; to study a state with substantial correlations (⟨XX⟩ > 0.1), 
a ramp time of more than roughly 1/g is required, at which point the 
system is typically already near equilibrium. Moreover, although these 
knobs allow for tuning energy density and antiferromagnetic correla-
tions, quantities such as vorticity are out of reach.

Next, we therefore expand the capabilities of our platform by com-
bining the analogue evolution with entangled state preparation by 
means of high-fidelity (digital) two-qubit gates (Fig. 5a,b). Following 
the preparation of the dimer state, ( 01⟩ − 10⟩) N⊗ /2q , we rapidly turn on 
Hs with g/(2π) = 10 MHz and observe very fast thermalization of the 
energy density on a timescale of just around 1.5/g (Fig. 5c). As the sys-
tem thermalizes, the range of correlations increases rapidly (Fig. 5d), 
converging to a correlation length of roughly 1.0 (Fig. 5e). As is expected 
from ETH, this is in good agreement with ξ ≈ 1.1 observed for the same 
energy density (−0.23g) when tuning tr and n0.

–3 0 30 5 10 0 5 100 5 10 100 5 10 0 5

Energy density Spin current

Energy thermalization Energy transport Vortex thermalization

VorticityEnergy density Energy gradient

x (sites) x (sites) x (sites) x (sites) x (sites) x (sites)

0
0.29
1.44

y 
(s

ite
s)

y 
(s

ite
s)

y 
(s

ite
s)

c d f g

e h

i j

k

a Analogue evolution of dimer states

10–3 1–1.0 1.0 –0.3 0.3 –1.0 1.0 0.05 1.00 –0.5 0.5

Spin current

Energy current

 = π = 0

 = π/2

–3

0

3

0

4

8

–3

0

3 0.29

0

4

8 0.29

–3

0

3 1.44

0

4

8 1.44

0

4

8

0

4

8

0

4

8 8.6

0

4

8 8.6

0

4

8 23.0

0

4

8 23.0

0

4

8

0

4

8

0

4

8 0.34

0

4

8 0.34

0

4

8 0.92

0

4

8 0.92

1 2 3 4

Euclidean distance (sites)

0 10 20

Time (1/g)

–0.3

0

0.3

0.6

M
ea

n 
en

er
gy

 d
en

si
ty

0 2 4

Time (1/g)

r.
m

.s
. v

or
tic

ity

x = 2,3,4,5,6,7,8
Imbalance Σ<5 – Σ>5
Diffusion model

b
|〉 = # ( |10〉 + exp(in)|01〉 )

n = 0

Nq/2

exp(–iHst) Energy

Spin current

Vorticity

: √iSWAP: SQ gate

10–2

10–1

30
10–2

10–1

gt = 0gt = 0 gt = 0 gt = 0 gt = 0 gt = 0

gt
 = 1.0

G(r)

| G
(|r

|) 
|

Fig. 5 | Transport and thermalization dynamics with entangled initial states. 
a, Dimer states are prepared using digital gates, and their thermalization and 
transport dynamics are realized with analogue evolution, before finally 
measuring energy, spin current and vorticity. b, We prepare dimer states with 
spatially tunable phase, ϕ. Energy gradients between ϕ = 0 (ε > 0) and ϕ = π (ε < 0) 
drive energy current, whereas ϕ = π/2 gives non-zero spin current and vorticity. 
c,d, Time evolution of energy density (c) and correlations (d) after dimer 
preparation demonstrate rapid thermalization. e, Correlations become 
increasingly long-ranged as the system thermalizes. Dashed line, exponential 
fit. f,g, Energy density (f) and energy gradients (g) after dimer preparation with 

ϕ = 0 and π in the left and right halves of the system, respectively, showing energy 
transport on much longer timescales. Colour and length scales of arrows in g 
and i are logarithmic. h, Time dependence of average energy density along 
various vertical cuts (coloured circles) and energy imbalance across x = 5 (black 
circles), showing very good agreement with diffusion model (dashed lines). 
Error bars smaller than markers. i,j, Spin current (i) and vorticity ( j) for ϕ = π/2, 
showing rapid thermalization. k, The r.m.s. vorticity shows initial slow dynamics 
followed by near-exponential decay with rate Γ = 49 MHz = 0.85g (fit shown by 
dashed line). Error bars in e and k are estimated by bootstrapping (Nreps = 104).
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Next we leverage the tunability of the phases of the initial dimer 

states to enable study of transport (Fig. 5b). Specifically, we prepare 
the dimers in one half of the device in the higher-energy dimer state, 
01⟩ + 10⟩  (Fig. 5f). Now the dynamics are found to be substantially 

slower, with clear spatial non-uniformity remaining even after 23 cycles. 
We also plot the energy density gradient in Fig. 5g, which quickly estab-
lishes a uniform field in the +x direction. Figure 5h shows the time 
dependence of the average energy density at various vertical cuts (col-
oured circles), as well as the total energy transfer across x = 5 (black 
circles), which both show excellent agreement with a diffusion model 
(dashed lines). The energy transport is indeed expected to be diffusive 
due to the relatively high energy of the dimer state. The data allow for 
extracting a diffusion constant of D = 29.6 MHz = 0.52g.

The use of initial entangled states in our hybrid analogue–digital plat-
form enables not only tailoring the initial energy landscape, but also 
other observables such as vorticity and spin current. We achieve this by 
further tuning the initial dimer phases to π/2 (Fig. 5b). This gives rise to 
local spin currents, ⟨XiYi+1 − YiXi+1⟩/2 ≠ 0, and a sea of vortices and anti-
vortices, quantified by the vorticity, V X Y Y X X Y Y X= ( − + − )i i i i i i i i i

1
4 1 2 2 3 3 4 4 1  

for each plaquette i with vertices {i1, i2, i3, i4}. The temporal evolution 
of the spin current and vorticity is presented in Fig. 5i,j, respectively, 
showing thermalization on a fast timescale similar to that in Fig. 5c. 
Specifically, after an initial super-exponential decay, the r.m.s. vorticity 
decays near-exponentially with a rate of Γ = 49 MHz = 0.85g (Fig. 5k).

Our results demonstrate a high-fidelity quantum simulator with 
the capability of emulating beyond-classical chaotic dynamics, a wide 
range of characterization probes and versatile analogue–digital con-
trol. Leveraging these features has enabled new insights about the 
rich interplay of quantum and classical critical behaviour in the 2D XY 
model, including the Kosterlitz–Thouless transition, thermalization 
dynamics and a breakdown of the KZ scaling relations. The effects of 
the co-existing gapped longitudinal modes and gapless (finite-size 
limited) transverse modes, specifically on the coarsening dynamics, 
is of particular interest for future theoretical study. Looking ahead, 
the new platform presented here is expected to offer an invaluable 
playground for studies of classically intractable many-body quantum 
physics, including, for example, dynamical response functions and 
magnetic frustration. Finally, we note that during the preparation of 
this paper, we became aware of a related work studying coarsening near 
an Ising quantum phase transition with Rydberg atoms56.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-024-08460-3.

1.	 Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 
017003 (2021).

2.	 Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, 
thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

3.	 del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: topological defects 
from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

4.	 Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two- 
dimensional systems. J. Phys. C. Solid State Phys. 6, 1181 (1973).

5.	 Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43,  
2046–2049 (1991).

6.	 Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).
7.	 D’Alessio, L., Kafri, Y., Polkovnikov, A. & Rigol, M. From quantum chaos and eigenstate 

thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239–362 
(2016).

8.	 Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607,  
667–676 (2022).

9.	 Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 
80, 885–964 (2008).

10.	 Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).
11.	 Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting 

circuits. Nat. Phys. 8, 292–299 (2012).

12.	 Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 
268–279 (2020).

13.	 Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. 
Nat. Phys. 16, 132–142 (2020).

14.	 King, A. D. et al. Computational supremacy in quantum simulation. Preprint at https://
arxiv.org/abs/2403.00910 (2024).

15.	 Dziarmaga, J. Dynamics of a quantum phase transition: exact solution of the quantum 
Ising model. Phys. Rev. Lett. 95, 245701 (2005).

16.	 Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 
95, 105701 (2005).

17.	 Polkovnikov, A. Universal adiabatic dynamics in the vicinity of a quantum critical point. 
Phys. Rev. B 72, 161201 (2005).

18.	 Ali, A. et al. Quantum quench dynamics of geometrically frustrated Ising models. Preprint 
at https://arxiv.org/abs/2403.00091 (2024).

19.	 Samajdar, R. & Huse, D. A. Quantum and classical coarsening and their interplay with the 
Kibble–Zurek mechanism. Preprint at https://arxiv.org/abs/2401.15144 (2024).

20.	 Roychowdhury, K., Moessner, R. & Das, A. Dynamics and correlations at a quantum phase 
transition beyond Kibble–Zurek. Phys. Rev. B 104, 014406 (2021).

21.	 Biroli, G., Cugliandolo, L. F. & Sicilia, A. Kibble–Zurek mechanism and infinitely slow 
annealing through critical points. Phys. Rev. E 81, 050101 (2010).

22.	 Chandran, A., Erez, A., Gubser, S. S. & Sondhi, S. L. Kibble–Zurek problem: universality 
and the scaling limit. Phys. Rev. B 86, 064304 (2012).

23.	 Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Critical dynamics of spontaneous 
symmetry breaking in a homogeneous bose gas. Science 347, 167–170 (2015).

24.	 Keesling, A. et al. Quantum Kibble–Zurek mechanism and critical dynamics on a 
programmable Rydberg simulator. Nature 568, 207–211 (2019).

25.	 Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum 
simulator. Nature 595, 227–232 (2021).

26.	 Langen, T. et al. Experimental observation of a generalized Gibbs ensemble. Science 348, 
207–211 (2015).

27.	 Prüfer, M. et al. Observation of universal dynamics in a spinor Bose gas far from equilibrium. 
Nature 563, 217–220 (2018).

28.	 Schreiber, M. et al. Observation of many-body localization of interacting fermions in a 
quasirandom optical lattice. Science 349, 842–845 (2015).

29.	 Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated 
many-body system. Science 353, 794–800 (2016).

30.	 Neill, C. et al. Ergodic dynamics and thermalization in an isolated quantum system.  
Nat. Phys. 12, 1037–1041 (2016).

31.	 Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in 
superconducting qubits. Science 358, 1175–1179 (2017).

32.	 Braumüller, J. et al. Probing quantum information propagation with out-of-time-ordered 
correlators. Nat. Phys. 18, 172–178 (2022).

33.	 Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. 
Science 377, 311–314 (2022).

34.	 Zhang, X., Kim, E., Mark, D. K., Choi, S. & Painter, O. A superconducting quantum 
simulator based on a photonic-bandgap metamaterial. Science 379, 278–283  
(2023).

35.	 Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg 
atoms. Nature 595, 233–238 (2021).

36.	 Karamlou, A. H. et al. Probing entanglement in a 2D hard-core Bose–Hubbard lattice. 
Nature 629, 561–566 (2024).

37.	 Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom 
arrays. Nature 604, 451–456 (2022).

38.	 Lamata, L., Parra-Rodriguez, A., Sanz, M. & Solano, E. Digital-analog quantum simulations 
with superconducting circuits. Adv. Phys. X 3, 1457981 (2018).

39.	 Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 
595–600 (2018).

40.	 Bairey, E., Arad, I. & Lindner, N. H. Learning a local hamiltonian from local measurements. 
Phys. Rev. Lett. 122, 020504 (2019).

41.	 Evans, T. J., Harper, R. & Flammia, S. T. Scalable Bayesian Hamiltonian learning. Preprint at 
https://arxiv.org/abs/1912.07636 (2019)

42.	 Shaw, A. L. et al. Universal fluctuations and noise learning from Hilbert-space ergodicity. 
Preprint at https://arxiv.org/abs/2403.11971 (2024).

43.	 Mark, D. K., Choi, J., Shaw, A. L., Endres, M. & Choi, S. Benchmarking quantum simulators 
using ergodic quantum dynamics. Phys. Rev. Lett. 131, 110601 (2023).

44.	 Shaw, A. L. et al. Benchmarking highly entangled states on a 60-atom analogue quantum 
simulator. Nature 628, 71–77 (2024).

45.	 Arute, F. et al. Quantum supremacy using a programmable superconducting processor. 
Nature 574, 505–510 (2019).

46.	 Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum 
processor. Phys. Rev. Lett. 127, 180501 (2021).

47.	 Zhu, Q. et al. Quantum computational advantage via 60-qubit 24-cycle random circuit 
sampling. Sci. Bull. 67, 240–245 (2022).

48.	 Morvan, A. et al. Phase transitions in random circuit sampling. Nature 634, 328–333 
(2024).

49.	 Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 
616, 691–695 (2023).

50.	 Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the 
superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

51.	 Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional 
superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).

52.	 Swendsen, R. H. First-and second-order phase transitions in the d = 2xy model. Phys. Rev. 
Lett. 49, 1302 (1982).

53.	 Schuckert, A. et al. Observation of a finite-energy phase transition in a one-dimensional 
quantum simulator. Preprint at https://arxiv.org/abs/2310.19869 (2023).

54.	 Brydges, T. et al. Probing rényi entanglement entropy via randomized measurements. 
Science 364, 260–263 (2019).

https://doi.org/10.1038/s41586-024-08460-3
https://arxiv.org/abs/2403.00910
https://arxiv.org/abs/2403.00910
https://arxiv.org/abs/2403.00091
https://arxiv.org/abs/2401.15144
https://arxiv.org/abs/1912.07636
https://arxiv.org/abs/2403.11971
https://arxiv.org/abs/2310.19869


Nature  |  Vol 638  |  6 February 2025  |  85

55.	 Metlitski, M. A. & Grover, T. Entanglement entropy of systems with spontaneously broken 
continuous symmetry. Preprint at https://arxiv.org/abs/1112.5166 (2015).

56.	 Manovitz, T. et al. Quantum coarsening and collective dynamics on a programmable 
quantum simulator. Preprint at https://arxiv.org/abs/2407.03249 (2024).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025
1Google Research, Mountain View, CA, USA. 2Department of Theoretical Physics, University  
of Geneva, Geneva, Switzerland. 3Joint Quantum Institute and Joint Center for Quantum 
Information and Computer Science, NIST/University of Maryland, College Park, MD, USA. 
4Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands. 
5Department of Physics, University of Connecticut, Storrs, CT, USA. 6Institute for Quantum 
Information and Matter and Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, 
CA, USA. 7Université Grenoble Alpes, CNRS, LPMMC, Grenoble, France. 8Department of 
Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA. 
9Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA. 
10QSI, Faculty of Engineering and Information Technology, University of Technology Sydney, 
Sydney, New South Wales, Australia. 11Department of Electrical and Computer Engineering, 
University of California, Riverside, Riverside, CA, USA. 12Department of Chemistry and 
Chemical Biology, Harvard University, Cambridge, MA, USA. 13Laboratory for Theoretical and 
Computational Physics, Paul Scherrer Institute, Villigen, Switzerland. 14Institute of Physics, 
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. 15Department  
of Physics, Princeton University, Princeton, NJ, USA. 16These authors contributed equally:  
T. I. Andersen, N. Astrakhantsev. ✉e-mail: trondiandersen@google.com; abanin@google.com; 
mixiao@google.com

T. I. Andersen1,16 ✉, N. Astrakhantsev1,16, A. H. Karamlou1, J. Berndtsson1, J. Motruk2, A. Szasz1, 
J. A. Gross1, A. Schuckert3, T. Westerhout4, Y. Zhang1, E. Forati1, D. Rossi2, B. Kobrin1, 
A. Di Paolo1, A. R. Klots1, I. Drozdov1,5, V. Kurilovich1, A. Petukhov1, L. B. Ioffe1, A. Elben6, 
A. Rath7, V. Vitale7, B. Vermersch7, R. Acharya1, L. A. Beni1, K. Anderson1, M. Ansmann1, 
F. Arute1, K. Arya1, A. Asfaw1, J. Atalaya1, B. Ballard1, J. C. Bardin1,8, A. Bengtsson1, A. Bilmes1, 
G. Bortoli1, A. Bourassa1, J. Bovaird1, L. Brill1, M. Broughton1, D. A. Browne1, B. Buchea1, 
B. B. Buckley1, D. A. Buell1, T. Burger1, B. Burkett1, N. Bushnell1, A. Cabrera1, J. Campero1, 
H.-S. Chang1, Z. Chen1, B. Chiaro1, J. Claes1, A. Y. Cleland1, J. Cogan1, R. Collins1, P. Conner1, 
W. Courtney1, A. L. Crook1, S. Das1, D. M. Debroy1, L. De Lorenzo1, A. Del Toro Barba1, 
S. Demura1, P. Donohoe1, A. Dunsworth1, C. Earle1, A. Eickbusch1, A. M. Elbag1, M. Elzouka1, 
C. Erickson1, L. Faoro1, R. Fatemi1, V. S. Ferreira1, L. Flores Burgos1, A. G. Fowler1, B. Foxen1, 
S. Ganjam1, R. Gasca1, W. Giang1, C. Gidney1, D. Gilboa1, M. Giustina1, R. Gosula1, 
A. Grajales Dau1, D. Graumann1, A. Greene1, S. Habegger1, M. C. Hamilton1,9, M. Hansen1, 
M. P. Harrigan1, S. D. Harrington1, S. Heslin1,9, P. Heu1, G. Hill1, M. R. Hoffmann1, H.-Y. Huang1, 
T. Huang1, A. Huff1, W. J. Huggins1, S. V. Isakov1, E. Jeffrey1, Z. Jiang1, C. Jones1, S. Jordan1, 
C. Joshi1, P. Juhas1, D. Kafri1, H. Kang1, K. Kechedzhi1, T. Khaire1, T. Khattar1, M. Khezri1, 
M. Kieferová1,10, S. Kim1, A. Kitaev1, P. Klimov1, A. N. Korotkov1,11, F. Kostritsa1, 

J. M. Kreikebaum1, D. Landhuis1, B. W. Langley1, P. Laptev1, K.-M. Lau1, L. Le Guevel1, 
J. Ledford1, J. Lee1,12, K. W. Lee1, Y. D. Lensky1, B. J. Lester1, W. Y. Li1, A. T. Lill1, W. Liu1, 
W. P. Livingston1, A. Locharla1, D. Lundahl1, A. Lunt1, S. Madhuk1, A. Maloney1, S. Mandrà1, 
L. S. Martin1, O. Martin1, S. Martin1, C. Maxfield1, J. R. McClean1, M. McEwen1, S. Meeks1, 
K. C. Miao1, A. Mieszala1, S. Molina1, S. Montazeri1, A. Morvan1, R. Movassagh1, C. Neill1, 
A. Nersisyan1, M. Newman1, A. Nguyen1, M. Nguyen1, C.-H. Ni1, M. Y. Niu1, W. D. Oliver1, 
K. Ottosson1, A. Pizzuto1, R. Potter1, O. Pritchard1, L. P. Pryadko1,11, C. Quintana1,  
M. J. Reagor1, D. M. Rhodes1, G. Roberts1, C. Rocque1, E. Rosenberg1, N. C. Rubin1, N. Saei1, 
K. Sankaragomathi1, K. J. Satzinger1, H. F. Schurkus1, C. Schuster1, M. J. Shearn1, A. Shorter1, 
N. Shutty1, V. Shvarts1, V. Sivak1, J. Skruzny1, S. Small1, W. Clarke Smith1, S. Springer1, 
G. Sterling1, J. Suchard1, M. Szalay1, A. Sztein1, D. Thor1, A. Torres1, M. M. Torunbalci1, 
A. Vaishnav1, S. Vdovichev1, B. Villalonga1, C. Vollgraff Heidweiller1, S. Waltman1, 
S. X. Wang1, T. White1, K. Wong1, B. W. K. Woo1, C. Xing1, Z. Jamie Yao1, P. Yeh1, B. Ying1, J. Yoo1, 
N. Yosri1, G. Young1, A. Zalcman1, N. Zhu1, N. Zobrist1, H. Neven1, R. Babbush1, S. Boixo1, 
J. Hilton1, E. Lucero1, A. Megrant1, J. Kelly1, Y. Chen1, V. Smelyanskiy1, G. Vidal1, P. Roushan1, 
A. M. Läuchli13,14, D. A. Abanin1,15 ✉ & X. Mi1 ✉

https://arxiv.org/abs/1112.5166
https://arxiv.org/abs/2407.03249
http://creativecommons.org/licenses/by/4.0/
mailto:trondiandersen@google.com
mailto:abanin@google.com
mailto:mixiao@google.com


Article
Methods

Device details
The experiments are performed on a superconducting quantum pro-
cessor with frequency-tunable transmon qubits and couplers, with a 
similar design to that in ref. 45. Extended Data Fig. 1a,b show the meas-
ured Ramsey dephasing (T *2 ) and photon relaxation (T1) times at the 
interaction frequency of 5.93 GHz used in our experiments, with median 
values of 2.0 and 18.8 μs, respectively. Characterizing our digital gate 
performance, we find a median Pauli error of 4.5 × 10−3 for combined 

iSWAP  and single-qubit gates (Extended Data Fig. 1c), and 1.0 × 10−3 
for single-qubit gates alone (Extended Data Fig. 1d). Finally, Extended 
Data Fig. 1e shows our readout errors, with a median of 1.4 × 10−2.

Analogue calibration
In this section, we describe our new, scalable analogue calibration 
framework that enables roughly 0.1% cycle error per qubit. To achieve 
a scalable scheme, we perform pairwise calibration measurements—
specifically single-photon and swap spectroscopy—which allows for 
accurately setting the effective coupling ∼g  and dressed qubit frequen-
cies ∼ωqi in each qubit pair. A key challenge in analogue calibration that 
contrasts with its digital counterpart is that these dressed quantities 
in the pairwise scenario change drastically when all couplers are turned 
on in the fully coupled global case. Therefore, we perform extensive 
modelling of the device physics to accurately convert them to the bare 
qubit and coupler frequencies, {ωqi},{ωcj}, which, crucially, do not 
change from the local calibration measurements to the full-scale 
experiments.

Model device Hamiltonian. We model both the qubits and couplers 
in our tunable coupler architecture as Kerr oscillators, with four or five 
levels in each transmon, depending on the number of photons involved 
in the Hamiltonian term of interest. Specifically, in calculations con-
cerning one- and two-photon terms, we include four and five levels, 
respectively. This is done to account for effects that do not obey the 
rotating-wave approximation, which couple 1⟩ to 3⟩ and 2⟩ to 4⟩. To 
ensure high accuracy, we account for not only coupling terms between 
neighbouring qubits and couplers, but also diagonal pathways, includ-
ing between couplers:
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where Q a a= +†  and the 
∼
k  are the effective coupling efficiencies 

between transmons, including both direct and indirect capacitive con-
tributions (note that the indirect contributions should not be confused 
with contributions due to virtual exchange interactions, which are 
included indirectly when we project out the couplers later on). The 
coupling efficiencies for the various terms can be summarized as  
follows:

For kqq, we include three types of qubit–qubit coupling, distinguished 
by the relative positioning of the qubits. Notably, the geometry of the 
transmons breaks the 90° rotational symmetry; specifically, the 

couplings differ along the northwest–southeast (NW–SE) and 
northeast-southwest (NE–SW) directions. To discuss the three types 
of coupling, we consider the four qubits on a plaquette shown in 
Extended Data Fig. 2 and consider examples of pairs of transmons (the 
formulas for the remaining pairs are given by reflection symmetry about 
the NW–SE and NE–SW axes, for example, k k k k= + 2q c q c q q q c, , , ,1 23 1 23 1 2 2 23

∼
 

infers that k k k k= + 2q c q c q q q c, , , ,1 34 1 34 1 4 4 34

∼
):

(1)	 Nearest-neighbours qubits, q1 and q2 separated by a coupler c12: ∼
k k k k= +q q q q q c q c, , , ,1 2 1 2 1 2

.
(2)	Diagonally separated qubits in the NW–SE direction, q1 and q3: ∼

k k k k k k= + 2( + )q q q q q q q q q q q q, , , , , ,1 3 1 3 1 2 2 3 1 4 4 3
.

(3)	Diagonally separated qubits in the NE–SW direction, q2 and q4: ∼
k k=q q q q, ,2 4 2 4

.
For kqc, we also include three types of qubit–coupler coupling:
(1)	 Nearest-neighbours: k k=q c q c, ,1 1 1 1

∼
.

(2)	Diagonally separated qubit and coupler in the NW–SE direction, q1 
and c23: 

∼
k k k k= + 2q c q c q q q c, , , ,1 23 1 23 1 2 2 23

.
(3)	Diagonally separated qubit and coupler in the NE–SW direction, q4 

and c12: k k=q c q c, ,4 12 4 12

∼
.

For kcc, we consider two types of coupler–coupler coupling:
(1)	 Diagonally separated couplers in the NW–SE direction c12 and c23: ∼

k k k k= + 2c c c c c q q c, , , ,12 23 12 23 12 2 2 23
.

(2)	Diagonally separated qubit and coupler in the NE–SW direction, c12 
and c14: k k=c c c c, ,12 14 12 14

∼
.

Calibration experiments. To calibrate the bare qubit and coupler 
frequencies for a given set of applied biases, we perform various types 
of calibration measurements (Extended Data Fig. 3a):
Ramsey spectroscopy. In this measurement, we perform standard 
Ramsey spectroscopy for a range of applied qubit bias values, while 
keeping the couplers turned off and the neighbouring qubits detuned, 
to prevent swapping.
Swap spectroscopy. This measurement is performed on a pairwise 
level, in which neighbouring couplers (except the one connecting the 
pair) are turned off. The two qubits are prepared in the 10⟩-state and 
we measure the swap rate as a function of detuning between the two 
qubits (Extended Data Fig. 3b). The minimum swap rate tells us the 
effective coupling between the two qubits, g∼, and the detuning at which 
this occurs equals the difference between the dressed frequencies of 
the qubits, ω ω−q q1 2

∼ ∼  (Extended Data Fig. 3c). Using an iterative scheme, 
we calibrate the coupler bias required to achieve the target effective 
coupling.
Single-photon spectroscopy. Whereas the swap spectroscopy pro-
vides us with the difference of the dressed frequencies, we also need 
to find their sum to determine the individual values, ωq1

∼  and ∼ωq 2
. We 

achieve this by preparing the qubits in ( 1⟩ + 0⟩) 0⟩/ 2 and measuring 
⟨X + iY⟩ as a function of evolution time (Extended Data Fig. 3d). The 
Fourier transform of the signal then reveals the eigenfrequencies of 
the two-qubit system, the average of which is equal to ω ω( + )/2q q1 2

∼ ∼  
(Extended Data Fig. 3e).

Next, using separately calibrated coupling efficiencies, we model 
all the calibration experiments above with the device Hamiltonian 
described earlier, to find the bare qubit and coupler frequencies that 
give the dressed quantities observed in the calibration experiment. 
We model not only the two qubits and the coupler involved in pairwise 
experiments (single qubit involved in Ramsey), but also the neigh-
bouring ‘padding’ qubits and couplers to account for their effects. 
Therefore, we start by determining the bare idle frequencies, {ωidle}, 
because these must be known to represent the padding in the interac-
tion configuration.

Projection onto computational subspace. Considering the fact that 
our model device Hamiltonian involves both qubits and couplers with 
up to five levels in each, it is computationally intractable to use it for 
time evolution even at small photon numbers. Moreover, in this form, 



it is very difficult to map its behaviour onto physically relevant systems. 
We therefore perform a projection technique to convert the device 
Hamiltonian into a spin Hamiltonian, Hs, that acts on the computa-
tional subspace. To find spin Hamiltonian terms involving n photons 
in a system of Nq qubits, we write ∑H i i H j j= ⟩⟨ ⟩⟨n

i j
( )

, d , where i{ ⟩} are 

our N
N
n

=n
q







  new dressed n-photon basis states.

Let us now motivate our choice of dressed basis states, by consider-
ing a few different options. One option could have been to simply use 
the bare qubit states, i{ ⟩ }bare ; however, this would cause the spin Ham-
iltonian to have different eigen-energies from the low-energy spectrum 
of Hd. A second option would be to instead use the Nn lowest-energy 
n-photon eigenstates of H i, { ⟩ }d eigen . In this case, the spin Hamiltonian 
is guaranteed to have the same Nn lowest n-photon eigen-energies as 
Hd. However, these basis states are highly delocalized and poorly rep-
resent our qubits. Hence, to get the best of both worlds, we turn to a 
third option, in which we project the bare qubit states onto the 
low-energy eigenspace spanned by i{ ⟩ }eigen . These projections are not 
orthonormal, so we perform singular value decomposition and set the 
singular values to one to arrive at our new dressed basis states. It can 
be shown that this is the most localized set of states that still preserve 
the low-energy eigenvalues57. These new basis states are slightly delo-
calized on the nearest couplers and qubits, and also have a weak over-
lap with states that have n + 2 and n − 2 photons due to terms beyond 
the rotating-wave approximation. We note that our typical coupler 
ramp times of more than 5 ns are sufficient to ensure adiabatic conver-
sion between the bare qubit states (in which we perform state prepara-
tion and measurement) and the dressed basis states that are relevant 
under analogue evolution.

The spin Hamiltonian H(n) found from the technique above in princi-
ple includes all terms involving ≤n photons, including very long-range 
interactions; however, they drop off rapidly with the photon–photon 
separation d (typically as (g/η)d ~ 0.1d). Moreover, we also find that the 
terms decay with the number of involved photons in a similar way. 
Hence, to achieve the low error demonstrated in our manuscript, it 
is sufficient to include only terms involving up to two photons, and 
where all the involved qubits are a maximum Manhattan distance of 
two sites apart, resulting in:
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qubits i, j, k are connected (Extended Data Fig. 4). We note that there 
is an offset to these scaling behaviours, which arises due to the diago-
nal capacitive coupling. This is particularly evident for terms involving 
qubits along the NW–SE diagonal, because the diagonal coupling is 
strongest there.

Our technique requires finding the Nn lowest-energy n-photon eigen-
states of Hd, which has a high computational cost for large Nq. Fortu-
nately, for a given Hamiltonian term involving a certain set of qubits, 
the effect of other transmons decays quickly with distance, and we 
only need to include the nearest neighbouring qubits and couplers to 
achieve accuracies on the tens of kHz scale. To find the spin Hamiltonian 
terms, we therefore scan through various subsystems and perform the 
procedure outlined above for each of them.

Phase calibration for hybrid analogue–digital experiments
In experiments in which we prepare an entangled initial state, the 
frequency trajectories of the qubits lead to phase accumulation that 
must be characterized and corrected through phase gates, both before 

and after the analogue evolution (Extended Data Fig. 5a). Specifically, 
in the frame that rotates at the interaction frequency, the qubits in 
each dimer pair precess relative to each other before they reach the 
interaction frequency. Hence, a phase rotation ϕ0,i must be applied 
to every qubit before turning on the analogue Hamiltonian to ensure 
that the dimer pairs have the desired phase difference when the cou-
pling is turned on. Second, in the idle frame (in which we perform the 
final measurements) the qubits are precessing relative to each other 
while on resonance. Hence, a final phase correction ϕ1,i + ωit (where t 
is the analogue evolution time) must also be applied to every qubit 
before measurements. These corrections are very sensitive to timing 
and dispersive shifts: before the analogue evolution, a timing delay 
in dimer generation of only 150 ps corresponds to a 0.1-rad change in 
ϕ0 for an idle frequency difference of 100 MHz. Furthermore, during 
the idle evolution, a 0.1% (80 kHz) change in dispersive shift leads to 
a 0.1-rad change in the final phase after 200 ns of analogue evolution. 
Hence, standard calibration techniques, such as single-qubit Ramsey 
spectroscopy, in which the configuration is sufficiently different from 
that in the actual experiment, are not accurate enough. We therefore use 
a set of three calibration techniques for ϕ0,i, ϕ1,i and ωi that are designed 
to represent the configuration used in the actual experiment as well 
as possible:

To calibrate ϕ0,i, we make use of the fact that the dimer state is only 
an eigenstate of the coupling Hamiltonian when the phase difference of 
the qubits is 0 or π. Hence, we sweep the phase difference and measure 
the population oscillations between the qubits with time. The cor-
rect phase compensation is the one that minimizes the amplitude of 
the population oscillations. We note two important points about this 
calibration step: first, as the measurements are in the Z-basis, they do 
not depend on the calibration of ϕ1,i and ωi. Second, because the phase 
calibrated in this step is accumulated before the couplers are turned 
on, it is not affected by dispersive shifts. It is therefore not a problem 
that neighbouring couplers are turned off during this particular step.

As mentioned previously, the calibration of ωi is very sensitive to 
dispersive shifts and must therefore be performed in the exact same 
configuration as the actual experiment. We achieve this by perform-
ing the KZ experiment (ramp from Neel state in staggered field) with a 
slow ramp and leaving the analogue Hamiltonian on for a variable time 
(Extended Data Fig. 5d). The resultant state shows long-range XX + YY 
correlations, and the effect of the phase accumulation in the idle frame 
is to cause oscillations in the correlator between each pair i and j with 
a frequency ωi − ωj (Extended Data Fig. 5e). Hence, by measuring the 
frequency of oscillations of all the correlators, the full set of {ωi} can 
be determined. The key advantage of this calibration measurement is 
that all the couplers are turned on, so that the dispersive shifts are the 
same as in the actual dimer experiment. However, the initial part of the 
KZ circuit—including the initial staggered field and the slow ramp of 
the couplers—is different, so the time-independent part of the phase 
correction, ϕ1,i, must be calibrated separately.

Finally, to determine ϕ1,i, we take advantage of energy conservation. 
Specifically, we perform the dimer experiment with single dimers while 
sweeping their final phase difference (Extended Data Fig. 5f). Only the 
correct phase compensation leads to ⟨X1X2⟩ = 1 and conserved energy, 
as can be see in Extended Data Fig. 5g. Whereas the dispersive shifts 
from neighbouring couplers affect the time-dependent part of the final 
phase ωit and thus had to be included in the previous step, they do not 
have this effect on ϕ1,i and can therefore be excluded here.

Finally, we note that for experiments not involving entangled initial 
states (Figs. 3 and 4), only the step for calibration of {ωi} outlined above 
is required.

Readout correction and postselection schemes
Bell measurements. When measuring ⟨XX + YY⟩ correlators using 
standard single-qubit measurements, we cannot simultaneously get 
information about the number of photons measured on the pair of 
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qubits, preventing us from postselecting our data on photon con-
servation. To get around this for nearest-neighbour pairs, we change 
our measurement basis by applying an entangling gate given by the  
unitary,

1 0 0 0
0 1/ 2 −1/ 2 0

0 1/ 2 1/ 2 0
0 0 0 1
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to each pair. From these measurements, we can deduce both the 
nearest-neighbour correlators and the number of photons present. 
We use this technique to process the data labelled ‘Bell’ in Fig. 3b. We 
find good alignment between direct measurements of the correlators 
and the inferred correlators from the Bell measurements.

Bell measurements with readout corrections. Typically, one can 
correct for readout errors by inverting the error channel. In the case 
in which readout errors are uncorrelated, we can simply characterize 
the matrix β for each qubit

β
p p
p p=

(0|0) (0|1)

(1|0) (1|1)


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


where p(i∣j) is the probability of measuring a state i⟩ given that j⟩ was 
prepared58. In the case in which readout errors are correlated for pairs, 
we can similarly characterize a matrix γ for each pair
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(00|00) (00|01) (00|10) (00|11)

(01|00) (01|01) (01|10) (01|11)

(10|00) (10|01) (10|10) (10|11)

(11|00) (11|01) (11|01) (11|11)

where p(ij∣ab) is the probability of measuring a state ij⟩ given that ab⟩ 
was prepared. One can compensate for the effects of readout errors 
on an observable by inverting these matrices and applying them to the 
measured distribution of bitstrings of the subsystem involved in the 
observable.

In a case in which we want to both correct for readout errors and 
postselect our data, we cannot apply the readout correction on the 
postselected distributions as this would overcorrect for p(0∣1) type 
errors. We also cannot simply correct the distributions of subsystem 
bitstrings before the postselection process because we need access 
to the global bitstrings to postselect on photon number conserva-
tion. Instead, we use a Markov-like process in which we consider each 
individual bitstring, and flip pairs of spins according to the probabili-
ties inferred from the γ matrices. We then postselect the individual 
bitstrings on the criteria of photon conservation and, finally, compute 
the quantity of interest.

To confirm the validity of this method, we classically simulate a 
low-temperature state of the XY model for 64 qubits (using the ground 
state of two disconnected sets of 32 qubits), introduce noise to the 
system and use the above protocol to correct for the T1 and readout 
errors. In simulating the readout errors, we include a readout bias equal 
to that observed in experiment, namely p(0∣1)/p(1∣0) = 3.7. We compute 
the energies of the system after various correction schemes and com-
pare to the noiseless value. The results from these simulations are 
shown in Extended Data Fig. 6a,b, where we evaluate the performance 
for a wide range of readout error and probability of photon decay, 
respectively. The combined technique described above is found to 
provide the most accurate estimate of the actual energy across a very 
wide parameter range, extending beyond the range relevant to our 
experiment (in the experiment, we have readout errors in the range 
1–4% and a probability of photon decay of 3–6% for ramp times of 
200–500 ns). For very high T1 errors, we find that the error in the 

combined technique eventually becomes slightly higher than that of 
pure postselection. In the special case of very low T1 errors, we observe 
an interesting effect that leads to a slight underestimate of the energy, 
which can be understood as follows. Whereas the stochastic compen-
sation of readout errors perfectly re-establishes the correct distribu-
tions of subsystem bitstrings (by construction of the probabilities with 
which we change the two-qubit bitstrings), each individual global 
bitstring has a non-zero probability of having the wrong total number 
of photons, even in the case of zero T1 error. The lowest-energy 
two-qubit state, 10⟩ − 01⟩ (converted to 10⟩ by Bell conversion) has a 
slightly higher chance of being postselected than other two-qubit 
states. The result of this is a slight underestimate of the energy, which 
we emphasize is very small (roughly 1%) and not relevant in the para
meter range of our experiment.

Comparison of ⟨XX⟩ and ⟨YY⟩
The final states produced after the ramp procedures in Figs. 3 and 4 
are expected to be U(1)-symmetric, and thus have equally strong XX 
and YY correlations. We here check this by comparing ⟨XX⟩ and ⟨YY⟩ 
averaged over all nearest-neighbour qubit pairs across a range of 
ramp times (Extended Data Fig. 7), and indeed find that the two are  
equal.

Diffusion model
In Fig. 5h, we fit the observed energy transport with a diffusion model, 
which we describe in further detail here. We define the energy density 
at site (i, j), ei,j(t), as the average of the energy (⟨XX + YY⟩/2) on the bonds 
that include site (i, j) and model the transport using a simple discretized 
version of the diffusion equation:
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where the diffusion constant, D, is the only fit parameter.

Measurements of energy density fluctuations
We use measurements of two- and four-qubit correlators to reconstruct 
the energy density fluctuations, σ n g H H= ( ) ⟨ ⟩ − ⟨ ⟩ε XY XYB m
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where ⟨i, j⟩, ⟨j, k⟩ and ⟨m, n⟩ are nearest-neighbour pairs and i, j, k, m, n 
are distinct (note that j is included in the last sum to count the number 
of length-2 paths from i to k). Almost all of these terms can be recon-
structed from just three different sets of measurements, namely 
{Xi}, {Yi} and {Zi}, except the four-qubit correlators involving both X and 
Y. To determine these, we measure eight periodic patterns of X, Y shown 
in Extended Data Fig. 8a, and leverage the substantial degree of isot-
ropy to find the remaining correlators not included in these patterns 
(further justification below). As shown in Extended Data Fig. 8b, the 
four-qubit correlators that involve both X and Y show a clear trend with 
the distance between the centres of mass of the two involved 
nearest-neighbour pairs (i, j) and (m, n), and we therefore interpolate 
the data obtained from these eight sets of measurements to find the 
remaining terms. Determining σε with good relative accuracy is chal-
lenging, owing to the very small relative difference between H⟨ ⟩XY

2 and 
H⟨ ⟩XY

2 . Nevertheless, we find that our technique works well, and we 
obtain relatively good agreement with MPS simulations (Extended 
Data Fig. 8c).



To further justify the use of this interpolation technique, we show 
the dependence of ⟨XiXjYmYn⟩ on the relative position of the centres of 
mass of the two involved nearest-neighbour pairs (i, j) and (m, n), show-
ing near-isotropic distributions (Extended Data Fig. 9a). We observe a 
weak angular dependence with a period of π (Extended Data Fig. 9b), 
which becomes most pronounced when the correlation length is maxi-
mized (for example, gmtr = 12.3). The amplitude is only roughly ±0.01 
(or roughly 5% of the signal itself) and is expected to be due to the 
system shape. As we are only interested in the sum of all the correlators, 
this small degree of isotropy has very little effect on the interpola-
tion scheme described above. In Extended Data Fig. 9c, we compare 
the result of radial interpolation of ⟨XXYY⟩ at distance 5 (dashed black 
curve) to the actual correlators (coloured circles in main) and their 
average (red dashed curve in inset), and find that the difference is very 
small. In particular, we quantify the relative difference between the 
radial interpolation and the averaged actual correlators in Extended 
Data Fig. 9d, and find that it is on the order of a few percent, and even 
smaller at the long times that are most essential to our conclusions. 
These deviations are comparable to the statistical noise (as shown by 
the error bars) and do not contribute a dominant effect to the total 
energy fluctuations.

Correlation fitting
We here provide further details about the fitting procedures used in 
the main text for analysing correlations. As shown in Extended Data 
Fig. 10 and also in some of the curves in Fig. 3d, we observe distor-
tions in the correlation decay at longer distances both in experiment 
(a) and simulation (b), which are expected to be due to the finite size 
of our system. Specifically, we find that the correlations drop rapidly 
for some ramp times and start increasing at others. If fitting up to the 
longest distances, these effects have a strong impact on the analy-
sis, as can be seen from the sharp upturn in the fit error as we exceed 
a fit range of roughly six sites in Extended Data Fig. 10c. Informed 
by these findings, and the fact that the maximum distance at which 
such effects are still minimal is six sites, we use this as the fit-range 
cut-off. Note that we also observe a noise floor in the correlations 
around 10−2, and we therefore do not fit data points smaller than  
this value.

We investigate the dependence on fit range further by plotting 
the r.m.s. fit errors for all ramp times and a wide range of fit-range 
cut-offs in Extended Data Fig. 10d,e (power-law and exponential fits, 
respectively). From these plots, it is again evident that the fits with 
distance cut-offs longer than six sites have particularly high errors 
(it is of course natural to see some increase in error with increasing 
fit range, but we are here referring to the distinct increase seen espe-
cially well in the inset of Extended Data Fig. 10d). Plotting the error 
ratio in Extended Data Fig. 10f, we find that all fits up to a fit range of 
seven sites show the same drop below one around gmtr = 10, and the 
discrepancy from KZ scaling is observed for all fit ranges (Extended 
Data Fig. 10g).
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Extended Data Fig. 1 | Device characterization. a,b, Ramsey dephasing (T *2 ; a) 
and photon relaxation (T1; b) times across the qubit grid. c,d, Histogram of 
Pauli error for combined iSWAP  and single qubit gates (c) and only single 
qubit gates (d). Red dashed lines indicate the median values. (CDF: cumulative 
distribution function). e, Histogram of readout errors.



Extended Data Fig. 2 | Schematic of underlying coupling pathways in the 
device. In addition to capacitive coupling between neighboring qubits (orange) 
and couplers (blue), there are also diagonal next-nearest-neighbor couplings. 
Asymmetry in the underlying structure of the qubits causes a difference in the 
couplings along the NW-SE and NE-SW diagonals.
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Extended Data Fig. 3 | Analogue calibration procedure. a, Overview of 
calibration steps. We perform three main steps, which together allow for 
determining the bare frequencies of the qubits and couplers in the idle 
configuration in which g = 0͠  (top row), as well as in the interaction configuration 
(bottom two rows). For each step, we model a subsystem (third column) to 
convert the measured dressed frequencies (fourth column) to bare frequencies 
(fifth column). b, Circuit schematic of swap spectroscopy. c, Top: Measured 
population difference, ⟨Z1 − Z2⟩, as a function of qubit detuning and time. 
Bottom: Extracted swap rate from Fourier transform vs qubit detuning. The 
position of the minimum allows for determining g͠  and the difference of the 
dressed qubit frequencies, ͠ ͠ω ω−q q1 2. d, Circuit schematic of single-photon 
spectroscopy. e, Fourier transform of the measured ⟨X⟩ + i⟨Y ⟩. The average of 
the peak positions is equal to the average of the dressed qubit frequencies 

͠ ͠ω ω( + )/2q q1 2 .



Extended Data Fig. 4 | Higher order terms in the analogue spin Hamiltonian. 
Average coupling coefficient vs nearest-neighbor hopping g for a, nini+1,  
b, (Xini+1 Xi+2 + Yini+1Yi+2)/2, c, (XiXi+2 + YiYi+2)/2, and d, ni(Xi+1 Xi+2 + Yi+1Yi+2)/2, where 
qubits i, i + 1, and i + 2 are placed along a connected line. Aside from an offset 
due to diagonal capacitive coupling, the first three terms scale as g2/η, while the 

fourth scales as g3η2, where η is the anharmonicity. At g = 2π × 10MHz, all 
higher-order terms are smaller than 1 × 2π MHz. In the three latter terms, there 
is asymmetry between the three possible configurations displayed in the insets 
(see text for details). Note that ni(Xi+1 Xi+2 + Yi+1Yi+2)/2 does not differ on average 
from (XiXi+1 + YiYi+1)ni+2/2 in d.
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Extended Data Fig. 5 | Phase calibration for hybrid analogue-digital 
experiments. a, Schematic of phase accumulation and correction throughout 
hybrid analogue-digital circuit. While we typically prepare initial dimer states, 
we here consider an initial state ++⟩∣  for the purpose of simplified explanation. 
Blue and yellow lines show qubit frequency trajectories and coupling profile, 
respectively, while brown (beige) boxes show the relative alignment of the two 
spins in the idle (resonance) frame. We apply corrective phases {ϕ0,i} before the 
analogue circuit to ensure the correct dimer phase in the resonance frame 
when the analogue Hamiltonian is turned on. Additional phases {ωit + ϕ1,i} are 
applied after the analogue evolution in order to measure the same phase in the 
idle frame as was in the resonance frame. b, {ϕ0,i} are calibrated by preparing 
triplet states, sweeping the phase difference within each qubit pair, and 
measuring the population difference after a variable time t. c, Population 
difference after time t for an applied phase difference ϕ. Since only the dimer 
phases 0 and π are eigenstates of the analogue Hamiltonian, the correct ϕ0,i is 
determined by minimizing the population oscillations. d, {ωi} are calibrated by 

performing adiabatic ground state preparation with an initial staggered field 
and a slow (25/gm) ramp, and measuring the ⟨XX⟩ correlations a time t after the 
ramp. e, Top: ⟨XX⟩ after time t when applying no corrective phase after the 
analogue evolution. Since the low-energy final state is known to have long- 
range correlations, the observed oscillations can be fit to extract the time- 
dependent part of the corrective phase after the analogue pulse. Bottom: ⟨XX⟩ 
after time t when applying the corrective phase found from fitting the 
oscillations. The near-constant value indicates a successful correction. f, {ϕ1,i} 
are calibrated by preparing an initial dimer state, performing the same circuit 
as in the experiment with corrective pre-analogue phases {ϕ0,i} and partial 
post-analogue phases {ωit}, applying a variable phase ϕ to one qubit in each 
pair, and measuring the ⟨XX⟩ correlations a time t after the ramp. g, Top: ⟨XX⟩ 
after time t. Since the state is known to be the triplet state, the correct ϕ1 is 
found from maximizing ⟨X X ⟩ correlations. Bottom: As a complementary 
technique, one can prepare the singlet state instead and find the ϕ that minimizes 
variations in ⟨XX⟩ correlations.



Extended Data Fig. 6 | Correction for readout error and photon decay. 
Performance of various readout and photon decay correction techniques as a 
function of a, readout error b, and photon decay probability. The performance 
is measured as the relative error between the estimated energy (Eest) and the 
actual ground state energy (Egs). We find that the combined technique (red) 
achieves the lowest relative error for a very wide range of parameters.
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Extended Data Fig. 7 | Comparison of X X- and YY-correlations. Ramp time 
dependence of ⟨XX⟩ and ⟨YY ⟩ averaged over all nearest-neighbor pairs. The two 
are found to be very similar, consistent with U(1)-symmetry.



Extended Data Fig. 8 | Energy density fluctuations. a, In addition to {Xi}, {Yi} 
and {Zi}, we measure 8 periodic patterns of XX and YY to find σε. b, ⟨XXYY ⟩ has a 
relatively simple dependence on Euclidean distance (data from measurements 
shown in a), which can be interpolated to find the remaining terms. c, Energy 
density fluctuations, σε, displaying good agreement between experiment (red) 
and simulation (blue); however, at long ramp times, decoherence causes higher 
fluctuations in the experimental case.
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Extended Data Fig. 9 | Isotropy of 4-qubit correlators. a, Dependence of 
⟨XiXjYmYn⟩ on relative position between centers of mass of sites (i, j) and (m, n), 
showing a substantial degree of isotropy. b, Angular dependence of ⟨XiXjYmYn⟩, 
displaying weak π-periodic oscillations that are most pronounced in the regime 
with longest correlations. c, Comparison of radial interpolation (dashed black) 

with the actual correlators at distance 5 (colored circles in main) and their 
average (dashed red in inset). d, Relative difference between radial interpolation 
and average of actual correlators, as a function of ramp time. The error is on the 
order of a few percent, and is comparable to the statistical error (error bars 
estimated from bootstrapping with 48,000 shots at each ramp time).



Extended Data Fig. 10 | Correlation fitting. a,b, Dependence of ⟨XiXj + YiYj⟩/2 
on Euclidean distance between i and j at various ramp times from experimental 
data (a) and simulation results (b). In both cases, we observe distortions at 
longer (≳ 6 sites) distances, attributed to the finite size of our system. c, Root- 
mean-square fit error for exponential (green) and power-law (violet) fits, as a 
function of the cut-off distance applied in the fits. Going beyond a distance of 6, 
we observe a steep increase in the fit error, arising from the effects seen in a  

and b. d,e, Ramp time dependence of rms error in power-law fits (d) and 
exponential fits (e) for various fit range cut-offs. Inset of d: Enlarged version  
of area indicated by red dashed square, showing abrupt increase in error for 
fit-range cut-offs longer than 7 sites. f,g, Ramp time dependence of rms error 
ratio (f) and correlation length (g). The drop in the fit error ratio below 1 is 
observed for all fit range cut-offs shorter or equal to 7 sites (f), and the discrepancy 
from KZ-scaling (dashed black) persists for all fit range cut-offs (g).
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